Stats
-
stats
-
binning
-
sturges
Sturges’ formula \(k = \lceil \log_2 n \rceil + 1\)
-
doane
Doane’s formula \(k = 1+\log_2 (n) + \log_2 (1+\frac{|g_1|}{\sigma_{g_1}})\)
where $g_1$ is the estimated 3rd-momentum skewness and
\[\sigma_{g_1} = \sqrt{\frac{6(n-2)}{(n+1)(n+3)}}\] -
scott
Scott’s normal reference rule
bin width $h$ is given by
\[h = \frac{3.49\hat{\sigma}}{\sqrt[3]{n}}\] -
freedman_diaconis
Freedman-Diaconis’ choice
bin width $h$ is given by \(h = 2\frac{IQR}{\sqrt[3]{n}}\) which is based on the interquartile range IQR.
-
-
frechet_inception_distance
-
Background
\[d_F(\mu, \nu) := \left(\inf_{\gamma \in \Gamma (\mu, \nu)} \int _{\mathbb{R}\times \mathbb{R}} \Vert x-y\Vert^2 d\gamma(x,y)\right)^{1/2}\]Where $\Gamma(\mu, \nu)$ is teh setof all measures on $\mathbb{R}\times \mathbb{R}$ with marginals $\mu$ and $\nu$. In other words, it is the 2-Wasserstein distnce on $\mathbb{R}^n$
-
How to use
import numpy as np from artemis7.stats.frechet_inception_distanec import FID x = np.random.normal(size = 1000) y = np.random.normal(size = 1000) fid = FID(x, y)
-
-
multivariate_sampling
-
piecewise_rejection_sampling
-
population_stability_index
-